April 12, 2023 J' =l CrateDB

CrateDB Office Hour #

Welcome

« Opportunity to talk to CrateDB engineers ©

* Open Zoom call

* No recording!

« As a starting point, we will show some cool features
« Ask questions, share your use case

=!I CrateDB

1 Window functions in CrateDB

2 User defined functions

3 Geospatial data and search in CrateDB

Your questions

Window functions

» Window functions operate on a subset of rows defined by the window specification

* Help perform calculations that depend on the rows’ order or involve comparisons with other rows in
the same result set

* To declare window function, use the OVER clause to define the window

coll, col2, |:> Computation window as a
table1 partition by col1

col?;

=!I CrateDB

Window functions: example

first_name,
last_name,
designation,

Result from query OVER(PARTITION
BY designation)

first_name last_name designation count(*) OVER (PARTITION B\aaasicaation
Window =

AYANNA AABERG Team Lead 860] e—— Team Leads

GERRY Software Engineer 60222

Window =
CRISTEN AADLAND Trainee 8601 -—) :
Trainees

LEN AADLAND Software Engineer 60222

(*) designation)
demo.employees
last_name
100;

DREW AADLAND Software Engineer 60222
CARMAN Software Engineer
» Count the number of employees for Window =
. . . JERALD AAGAARD Software Engineer Software
each designation value (e.g., trainee, | Engineers
team lead, software engineer) B
« Each designation is a window on

which count will be calculated

SILVIA AAGAARD Software Engineer
LONG AALBERS Software Engineer

OSVALDO AALBERS Software Engineer

Window =

ROB AALUND Senior Software Engineer p) L —— Senior Software

Engineers

MARJORY AAMODT Software Engineer

=! CrateDB 5

WINDOW clause

» Defining window using WINDOW clause can simplify the code and allow you to reuse window
specification across multiple expressions

« The ORDER and PARTITION define what is referred to as the window—the ordered subset of
data over which calculations are made

first_name, * For each employee, show the name,
last_name, designation, employee’s salary and
designation, the *max salary for her/his

salary, designation group

(salary) w max_salary
| demo.employees
' w (¢/ designation
last_name

100 ;

* The list of aggreagate and general-purpose functions on the defined window:
https://community.crate.io/t/window-functions-in-cratedb/1398

=!I CrateDB

User-Defined Functions (UDFs)

= Allows you to expand the capabilities of CrateDB with get_postal_code(address STRING)

_ _ _ STRING
vaScri reating r le functions.
JavaScript code, creating reusable functions JAVASCRIPT

= For example, get_postal _code function can be used to

function get_postal_code(address) {

extract postal code from the address const postalCodeRegex = /\d{5}$/;
const match = address.match(postalCodeRegex) ;
. PR if (match) {
= A dedicated scalar function: regexp matches

return match[@];
} else {
return null;

And then, use it as follows: }

get_postal_code(address) demo.employees , .}

Check other UDF examples here
https://community.crate.io/t/user-defined-function-collection/773
https://community.crate.io/t/advanced-downsampling-with-the-lttb-algorithm/1287

=!I CrateDB

https://crate.io/docs/crate/reference/en/5.2/general/builtins/table-functions.html
https://community.crate.io/t/user-defined-function-collection/773
https://community.crate.io/t/advanced-downsampling-with-the-lttb-algorithm/1287

Working with Geospatial data

« GEO_POINT: geographic data type used to store latitude and longitude coordinates.

« GEO_SHAPE: geographic data type used to store 2D shapes defined as GeoJSON geometry
objects.

« GEO_SHAPE can store different types of GeoJSON geometry objects:

my_table_geo (id, area)
'POINT (9.7417 47.4108)'),
"MULTIPOINT (47.4108 9.7417, 9.7483 47.4106)"'),
"LINESTRING (47.4108 9.7417, 9.7483 47.4106)"'),

'MULTILINESTRING ((47.4108 9.7417, 9.7483 47.4106), (52.56463 13.46738, 52.51000 13.47000))'),
'POLYGON ((47.4108 9.7417, 9.7483 47.4106, 9.7426 47.4142, 47.4108 9.7417))'),

'MULTIPOLYGON (((5 5, 18 5, 10 18, 5 5)), ((6 6, 10 5, 18 10, 6 6)))'),

' GEOMETRYCOLLECTION (POINT (9.7417 47.4188), MULTIPOINT (47.4108 9.7417, 9.7483 47.4106))"')

=!I CrateDB 8

https://crate.io/docs/crate/reference/en/5.2/general/ddl/data-types.html
https://crate.io/docs/crate/reference/en/5.2/general/ddl/data-types.html
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946

Geospatial data: Functions

» distance (geo_point1, geo point2) — calculate the distance between two points on Earth

» intersection (geo_shape1, geo_shape2) — returns true if both shapes share some points or area
« within (shape1, shape2) — returns true if shape1 is within shape 2

» geohash (geo_point) — returns a GeoHash representation based on full precision

« area (geo_shape) — calculates the area of the input shape in square-degrees

For each city, find distance from north pole:

city, distance(location, 'POINT(©6.6 90.0)') dist_north_pole

"demo" ."world_cities"

100,

=!I CrateDB

https://en.wikipedia.org/wiki/Geohash

GEO SHAPE

« GEO_SHAPE is represented as an object type = ‘Polygon’,
containing a valid GeoJSON geometry object: Cmrflllnates = [

« Alternatively, a ‘well-known text representation’ [100.
string can be used to represent GEO_SHAPE: [101.

[101.
[100.
[100.

'POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))'

Find if two shapes intersect:

name, intersects(boundary,
"POLYGON((2.348324 48.849304, 2.360516 48.858374, 2.337510 48.864306, 2.348324 48.849304))"')

demo.areas;

=!I CrateDB

Your questions

=l CrateDB

Contact: marija@crate.io _:l E C = t = D B

Thank you

